HL Paper 1

A point P, relative to an origin O, has position vector $\overrightarrow{\mathrm{OP}} = \begin{pmatrix} 1+s \\ 3+2s \\ 1-s \end{pmatrix}, \ s \in \mathbb{R}.$

Find the minimum length of \overrightarrow{OP} .

Three distinct non-zero vectors are given by $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$, and $\overrightarrow{OC} = c$. If \overrightarrow{OA} is perpendicular to \overrightarrow{BC} and \overrightarrow{OB} is perpendicular to \overrightarrow{CA} , show that \overrightarrow{OC} is perpendicular to \overrightarrow{AB} .

Consider the vectors $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$ and $\overrightarrow{OC} = a + b$. Show that if |a| = |b| then $(a + b) \cdot (a - b) = 0$. Comment on what this tells us about the parallelogram OACB.

Consider the plane with equation 4x - 2y - z = 1 and the line given by the parametric equations

 $egin{aligned} x &= 3-2\lambda \ y &= (2k-1)+\lambda \ z &= -1+k\lambda. \end{aligned}$

Given that the line is perpendicular to the plane, find

(a) the value of k;

(b) the coordinates of the point of intersection of the line and the plane.

Two boats, A and B, move so that at time t hours, their position vectors, in kilometres, are $\mathbf{r}_A = (9t)\mathbf{i} + (3-6t)\mathbf{j}$ and $\mathbf{r}_B = (7-4t)\mathbf{i} + (7t-6)\mathbf{j}$.

a. Find the coordinates of the common point of the paths of the two boats.

b. Show that the boats do not collide.

O, A, B and C are distinct points such that $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$.

[4] [2] It is given that c is perpendicular to \overrightarrow{AB} and b is perpendicular to \overrightarrow{AC} . Prove that a is perpendicular to \overrightarrow{BC} .

The points A, B, C and D have position vectors *a*, *b*, *c* and *d*, relative to the origin O.

It is given that $\vec{AB} = \vec{DC}$.

The position vectors \vec{OA} , \vec{OB} , \vec{OC} and \vec{OD} are given by

$$a = i + 2j - 3k$$
$$b = 3i - j + pk$$
$$c = qi + j + 2k$$
$$d = -i + rj - 2k$$

where p, q and r are constants.

The point where the diagonals of ABCD intersect is denoted by M.

The plane Π cuts the *x*, *y* and *z* axes at X , Y and Z respectively.

a.i. Explain why ABCD is a parallelogram.	
a.ii.Using vector algebra, show that $ec{ ext{AD}} = ec{ ext{BC}}.$	
b. Show that $p = 1, q = 1$ and $r = 4$.	[5]
c. Find the area of the parallelogram ABCD.	[4]
d. Find the vector equation of the straight line passing through M and normal to the plane Π containing ABCD.	[4]
e. Find the Cartesian equation of Π .	[3]
f.i. Find the coordinates of X, Y and Z.	[2]
f.ii. Find YZ.	

a.	Show that the points O(0, 0, 0), A(6, 0, 0), B(6, $-\sqrt{24}$, $\sqrt{12}$), C(0, $-\sqrt{24}$, $\sqrt{12}$) form a square.	[3]
b.	Find the coordinates of M, the mid-point of [OB].	[1]
C.	Show that an equation of the plane Π , containing the square OABC, is $y + \sqrt{2}z = 0$.	[3]
d.	Find a vector equation of the line L , through M, perpendicular to the plane Π .	[3]
e.	Find the coordinates of D, the point of intersection of the line L with the plane whose equation is $y = 0$.	[3]

- f. Find the coordinates of E, the reflection of the point D in the plane Π .
- g. (i) Find the angle ODA.
 - (ii) State what this tells you about the solid OABCDE.

(a) Show that the two planes

$$\pi_1:x+2y-z=1$$
 $\pi_2:x+z=-2$

are perpendicular.

(b) Find the equation of the plane π_3 that passes through the origin and is perpendicular to both π_1 and π_2 .

The following system of equations represents three planes in space.

$$egin{aligned} x+3y+z&=-1\ x+2y-2z&=15\ 2x+y-z&=6 \end{aligned}$$

Find the coordinates of the point of intersection of the three planes.

The position vectors of the points A, B and C are a, b and c respectively, relative to an origin O. The following diagram shows the triangle ABC and points M, R, S and T.

- Express \overrightarrow{AM} in terms of *a* and *c*. a. (i)
 - Hence show that $\overrightarrow{\mathrm{BM}} = rac{1}{2}a$ $b + rac{1}{2}c$. (ii)
- Express \overrightarrow{RA} in terms of *a* and *b*. b. (i)

(ii) Show that
$$\overrightarrow{RT} = -rac{2}{9}a - rac{2}{9}b + rac{4}{9}c.$$

c. Prove that T lies on [BM].

Find the values of x for which the vectors $\begin{pmatrix} 1 \\ 2\cos x \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 2\sin x \\ 1 \end{pmatrix}$ are perpendicular, $0 \le x \le \frac{\pi}{2}$.

Consider the vectors $\mathbf{a} = \mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$, $\mathbf{b} = -3\mathbf{j} + 2\mathbf{k}$.

- a. Find $\boldsymbol{a} \times \boldsymbol{b}$. [2]
- b. Hence find the Cartesian equation of the plane containing the vectors a and b, and passing through the point (1, 0, -1). [3]

The points A(1, 2, 1), B(-3, 1, 4), C(5, -1, 2) and D(5, 3, 7) are the vertices of a tetrahedron.

a. Find the vectors \overrightarrow{AB} and \overrightarrow{AC} .	[2]
b. Find the Cartesian equation of the plane \prod that contains the face ABC.	[4]

Consider the points A(1, 0, 0), B(2, 2, 2) and C(0, 2, 1).

A third plane Π_3 is defined by the Cartesian equation $16x + \alpha y - 3z = \beta$.

a.	Find the vector $\overrightarrow{\mathbf{CA}} \times \overrightarrow{\mathbf{CB}}$.	[4]
b.	Find an exact value for the area of the triangle ABC.	[3]

- b. Find an exact value for the area of the triangle ABC.
- c. Show that the Cartesian equation of the plane Π_1 , containing the triangle ABC, is 2x + 3y 4z = 2.
- d. A second plane Π_2 is defined by the Cartesian equation $\Pi_2: 4x y z = 4$. L_1 is the line of intersection of the planes Π_1 and Π_2 . [5] Find a vector equation for L_1 .

[5]

[5]

[3]

- e. Find the value of α if all three planes contain $L_1.$
- f. Find conditions on α and β if the plane Π_3 does **not** intersect with L_1 .

Consider the triangle ABC. The points P, Q and R are the midpoints of the line segments [AB], [BC] and [AC] respectively. Let $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$ and $\overrightarrow{OC} = c$.

a.	Find BR in terms of a , b and c .	[2]
b.	(i) Find a vector equation of the line that passes through B and R in terms of a , b and c and a parameter λ .	[9]
	(ii) Find a vector equation of the line that passes through A and Q in terms of a, b and c and a parameter μ .	
	(iii) Hence show that $\overrightarrow{\mathrm{OG}} = \frac{1}{3}(a+b+c)$ given that G is the point where $[BR]$ and $[AQ]$ intersect.	
c.	Show that the line segment $[CP]$ also includes the point G .	[3]
d.	The coordinates of the points A,B and C are $(1,\ 3,\ 1),$ $(3,\ 7,\ -5)$ and $(2,\ 2,\ 1)$ respectively.	[9]
	A point X is such that $[GX]$ is perpendicular to the plane ABC .	
	Given that the tetrahedron $ABCX$ has volume $12 ext{ units}^3$, find possible coordinates	

of X.

Consider the lines l_1 and l_2 defined by

$$l_1: {m r}=egin{pmatrix} -3\ -2\ a \end{pmatrix}+etaegin{pmatrix}1\ 4\ 2 \end{pmatrix}$$
 and $l_2: rac{6-x}{3}=rac{y-2}{4}=1-z$ where a is a constant.

Given that the lines l_1 and l_2 intersect at a point P,

- a. find the value of a;
- b. determine the coordinates of the point of intersection P.

[3]

[2]

[2]

[4]

Consider the plane Π_1 , parallel to both lines L_1 and L_2 . Point C lies in the plane Π_1 .

The line
$$L_3$$
 has vector equation $m{r}=egin{pmatrix}3\\0\\1\end{pmatrix}+\lambdaegin{pmatrix}k\\1\\-1\end{pmatrix}$

The plane Π_2 has Cartesian equation x + y = 12. The angle between the line L_3 and the plane Π_2 is 60°.

a. Given the points A(1, 0, 4), B(2, 3, -1) and C(0, 1, -2), find the vector equation of the line L_1 passing through the points A and B. [2]

b. The line L₂ has Cartesian equation ^{x-1}/₃ = ^{y+2}/₁ = ^{z-1}/₋₂. [5] Show that L₁ and L₂ are skew lines.
c. Find the Cartesian equation of the plane Π₁. [4]

[7]

[3]

[3]

- d. (i) Find the value of k.
 - (ii) Find the point of intersection P of the line L_3 and the plane Π_2 .

Given any two non-zero vectors \boldsymbol{a} and \boldsymbol{b} , show that $|\boldsymbol{a} \times \boldsymbol{b}|^2 = |\boldsymbol{a}|^2 |\boldsymbol{b}|^2 - (\boldsymbol{a} \cdot \boldsymbol{b})^2$.

The points A and B are given by A(0, 3, -6) and B(6, -5, 11).

The plane Π is defined by the equation 4x - 3y + 2z = 20.

- a. Find a vector equation of the line L passing through the points A and B.
- b. Find the coordinates of the point of intersection of the line L with the plane Π .

The three vectors *a*, *b* and *c* are given by

$$oldsymbol{a} = egin{pmatrix} 2y \ -3x \ 2x \end{pmatrix}, \,oldsymbol{b} = egin{pmatrix} 4x \ y \ 3-x \end{pmatrix}, \,oldsymbol{c} = egin{pmatrix} 4 \ -7 \ 6 \end{pmatrix} ext{ where } x,y \in \mathbb{R} \ .$$

- (a) If $\boldsymbol{a} + 2\boldsymbol{b} \boldsymbol{c} = 0$, find the value of x and of y.
- (b) Find the exact value of $|\boldsymbol{a} + 2\boldsymbol{b}|$.

The diagram below shows a circle with centre O. The points A, B, C lie on the circumference of the circle and [AC] is a diameter.

Let $\overrightarrow{OA} = \boldsymbol{a}$ and $\overrightarrow{OB} = \boldsymbol{b}$.

a. Write down expressions for \overrightarrow{AB} and \overrightarrow{CB} in terms of the vectors a and b.

b. Hence prove that angle \hat{ABC} is a right angle.

Two planes have equations

$$\Pi_1: \ 4x+y+z=8 ext{ and } \Pi_2: \ 4x+3y-z=0$$

[2]

[3]

[4]

[6]

[5]

Let L be the line of intersection of the two planes.

B is the point on Π_1 with coordinates (a, b, 1).

The point P lies on L and ${
m ABP}=45^\circ.$

a. Find the cosine of the angle between the two planes in the form $\sqrt{rac{p}{q}}$ where $p, \; q \in \mathbb{Z}.$

b. (i) Show that L has direction $\begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$.

- (ii) Show that the point A(1, 0, 4) lies on both planes.
- (iii) Write down a vector equation of L.

c. Given the vector $\overrightarrow{\mathrm{AB}}$ is perpendicular to L find the value of a and the value of b.

d. Show that $AB = 3\sqrt{2}$. [1]

e. Find the coordinates of the two possible positions of *P*. [5]

In the following diagram, $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$. C is the midpoint of [OA] and $\overrightarrow{OF} = \frac{1}{6}\overrightarrow{FB}$.

It is given also that $\overrightarrow{AD} = \lambda \overrightarrow{AF}$ and $\overrightarrow{CD} = \mu \overrightarrow{CB}$, where $\lambda, \ \mu \in \mathbb{R}$.

a.i. Find, in terms of a and b \overrightarrow{OF} .	[1]
a.ii.Find, in terms of a and b \overrightarrow{AF} .	[2]
b.i. Find an expression for $\overrightarrow{\mathrm{OD}}$ in terms of a , b and λ ;	[2]
b.iiFind an expression for $\overrightarrow{\mathrm{OD}}$ in terms of a , b and μ .	[2]
c. Show that $\mu=rac{1}{13}$, and find the value of $\lambda.$	[4]
d. Deduce an expression for $\stackrel{\longrightarrow}{\mathrm{CD}}$ in terms of a and b only.	[2]
e. Given that area $\Delta { m OAB} = k({ m area}\; \Delta { m CAD})$, find the value of k .	[5]

The vertices of a triangle ABC have coordinates given by A(-1, 2, 3), B(4, 1, 1) and C(3, -2, 2).

a.	(i)	Find the lengths of the sides of the triangle.	[6]
b.	(ii) (i)	Find $\cos B\widehat{A}C$. Show that $\overrightarrow{BC} \times \overrightarrow{CA} = -7i - 3j - 16k$.	[5]
	(ii)	Hence, show that the area of the triangle ABC is $\frac{1}{2}\sqrt{314}$.	
c.	Find	the Cartesian equation of the plane containing the triangle ABC.	[3]
d.	Find	a vector equation of (AB).	[2]
e.	The	point D on (AB) is such that \overrightarrow{OD} is perpendicular to \overrightarrow{BC} where O is the origin.	[5]

- (i) Find the coordinates of D.
- (ii) Show that D does not lie between A and B.

A line L has equation $rac{x-2}{p}=rac{y-q}{2}=z-1$ where $p,\ q\in\mathbb{R}.$

A plane Π has equation x + y + 3z = 9.

Consider the different case where the acute angle between L and Π is θ

where
$$heta = rcsinigg(rac{1}{\sqrt{11}}igg)$$

- a. Show that L is not perpendicular to Π . [3] b. Given that L lies in the plane Π , find the value of p and the value of q. [4] c. (i) Show that p = -2. [11]
 - (ii) If L intersects Π at z = -1, find the value of q.
- a. For non-zero vectors *a* and *b*, show that
 - (i) if $|\boldsymbol{a} \boldsymbol{b}| = |\boldsymbol{a} + \boldsymbol{b}|$, then \boldsymbol{a} and \boldsymbol{b} are perpendicular;
 - (ii) $|\boldsymbol{a} \times \boldsymbol{b}|^2 = |\boldsymbol{a}|^2 |\boldsymbol{b}|^2 (\boldsymbol{a} \cdot \boldsymbol{b})^2$.

b. The points A, B and C have position vectors *a*, *b* and *c*.

- (i) Show that the area of triangle ABC is $\frac{1}{2}|\boldsymbol{a} \times \boldsymbol{b} + \boldsymbol{b} \times \boldsymbol{c} + \boldsymbol{c} \times \boldsymbol{a}|$.
- (ii) Hence, show that the shortest distance from B to AC is

$$rac{oldsymbol{a} imes oldsymbol{b} + oldsymbol{b} imes oldsymbol{c} + oldsymbol{c} imes oldsymbol{a}|}{|oldsymbol{c} - oldsymbol{a}|}.$$

Consider the points A(1, -1, 4), B (2, -2, 5) and O(0, 0, 0).

- (a) Calculate the cosine of the angle between \overrightarrow{OA} and \overrightarrow{AB} .
- (b) Find a vector equation of the line L_1 which passes through A and B.

The line L_2 has equation $\mathbf{r} = 2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k} + t(2\mathbf{i} + \mathbf{j} + 3\mathbf{k})$, where $t \in \mathbb{R}$.

- (c) Show that the lines L_1 and L_2 intersect and find the coordinates of their point of intersection.
- (d) Find the Cartesian equation of the plane which contains both the line L_2 and the point A.

ABCD is a parallelogram, where $\overrightarrow{AB} = -i + 2j + 3k$ and $\overrightarrow{AD} = 4i - j - 2k$.

[8]

[7]

The points A, B, C have position vectors $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $3\mathbf{i} + \mathbf{k}$ respectively and lie in the plane π .

- (a) Find
- (i) the area of the triangle ABC;
- (ii) the shortest distance from C to the line AB;
- (iii) the cartesian equation of the plane π .

The line L passes through the origin and is normal to the plane π , it intersects π at the

point D.

- (b) Find
- (i) the coordinates of the point D;
- (ii) the distance of π from the origin.

Consider the points A(1, 2, 3), B(1, 0, 5) and C(2, -1, 4).

a. Find $\overrightarrow{AB} \times \overrightarrow{AC}$.

b. Hence find the area of the triangle ABC.

In the diagram below, [AB] is a diameter of the circle with centre O. Point C is on the circumference of the circle. Let $\overrightarrow{OB} = \boldsymbol{b}$ and $\overrightarrow{OC} = \boldsymbol{c}$.

- a. Find an expression for $\overrightarrow{\mathrm{CB}}$ and for $\overrightarrow{\mathrm{AC}}$ in terms of **b** and **c**.
- b. Hence prove that \hat{ACB} is a right angle.

[4]

[2]

[3]

Find the coordinates of the point of intersection of the planes defined by the equations x + y + z = 3, x - y + z = 5 and x + y + 2z = 6.

The following figure shows a square based pyramid with vertices at O(0, 0, 0), A(1, 0, 0), B(1, 1, 0), C(0, 1, 0) and D(0, 0, 1).

The Cartesian equation of the plane Π_2 , passing through the points B , C and D , is y+z=1.

The plane Π_3 passes through O and is normal to the line BD.

 Π_3 cuts AD and BD at the points P and Q respectively.

a.	Find the Cartesian equation of the plane Π_1 , passing through the points A , B and D.	[3]
b.	Find the angle between the faces ABD and BCD.	[4]
c.	Find the Cartesian equation of Π_3 .	[3]
d.	Show that P is the midpoint of AD.	[4]
e.	Find the area of the triangle OPQ.	[5]

PQRS is a rhombus. Given that $\overrightarrow{PQ} = a$ and $\overrightarrow{QR} = b$,

- (a) express the vectors \overrightarrow{PR} and \overrightarrow{QS} in terms of \boldsymbol{a} and \boldsymbol{b} ;
- (b) hence show that the diagonals in a rhombus intersect at right angles.

The vectors a, b, c satisfy the equation a + b + c = 0. Show that $a \times b = b \times c = c \times a$.

- a. Consider the vectors $\boldsymbol{a} = 6\boldsymbol{i} + 3\boldsymbol{j} + 2\boldsymbol{k}, \boldsymbol{b} = -3\boldsymbol{j} + 4\boldsymbol{k}$.
 - (i) Find the cosine of the angle between vectors *a* and *b*.
 - (ii) Find $\boldsymbol{a} \times \boldsymbol{b}$.
 - (iii) Hence find the Cartesian equation of the plane \prod containing the vectors *a* and *b* and passing through the point (1, 1, -1).
- (iv) The plane \prod intersects the x-y plane in the line l. Find the area of the finite triangular region enclosed by l, the x-axis and the y-axis.
- b. Given two vectors p and q,
 - (i) show that $\boldsymbol{p} \cdot \boldsymbol{p} = |\boldsymbol{p}|^2$;
 - (ii) hence, or otherwise, show that $|\mathbf{p} + \mathbf{q}|^2 = |\mathbf{p}|^2 + 2\mathbf{p}\cdot\mathbf{q} + |\mathbf{q}|^2$;
 - (iii) deduce that $|\mathbf{p} + \mathbf{q}| \le |\mathbf{p}| + |\mathbf{q}|$.
- (a) Show that a Cartesian equation of the line, l_1 , containing points A(1, -1, 2) and B(3, 0, 3) has the form $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{1}$.

(b) An equation of a second line, l_2 , has the form $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{1}$. Show that the lines l_1 and l_2 intersect, and find the coordinates of their point of intersection.

- (c) Given that direction vectors of l_1 and l_2 are d_1 and d_2 respectively, determine $d_1 \times d_2$.
- (d) Show that a Cartesian equation of the plane, \prod , that contains l_1 and l_2 is -x y + 3z = 6.
- (e) Find a vector equation of the line l_3 which is perpendicular to the plane \prod and passes through the point T(3, 1, -4).
- (f) (i) Find the point of intersection of the line l_3 and the plane \prod .
 - (ii) Find the coordinates of T', the reflection of the point T in the plane \prod .
 - (iii) Hence find the magnitude of the vector TT'.

The acute angle between the vectors 3i - 4j - 5k and 5i - 4j + 3k is denoted by θ .

Find $\cos \theta$.

Let α be the angle between the unit vectors *a* and *b*, where $0 \leq \alpha \leq \pi$.

- (a) Express $|\boldsymbol{a} \boldsymbol{b}|$ and $|\boldsymbol{a} + \boldsymbol{b}|$ in terms of α .
- (b) Hence determine the value of $\cos \alpha$ for which $|\mathbf{a} + \mathbf{b}| = 3 |\mathbf{a} \mathbf{b}|$.

[8]

A triangle has vertices A(1, -1, 1), B(1, 1, 0) and C(-1, 1, -1).

Show that the area of the triangle is $\sqrt{6}$.